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1     Overview 

The driving idea of this research is that there are some general relationships among 
dynamical characteristics of vibrating systems. We arrive at this idea when we com- 
pare the systems studied in statistical mechanics and structural mechanics. One of 
the favorite systems of statistical mechanics is a set of mass particles connected by 
springs (Fig. 1). We obtain the same kind of systems if we discretize the equations of 
elastic structures. For example, discretization of the dynamical equations of beams 
leads to a chain of mass particles (Fig. 2), while for more complex structures one 
obtains configurations in space like the one shown in Fig. 3. 

Another example of the similarity is black body radiation: dynamical equilibrium 
of an electromagnetic field in a closed region (symbolically shown in Fig. 4). Electro- 
magnetic field is described by linear Maxwell equations. It interacts with the charges 
on the wall in a nonlinear way. There is a very close structural analogy to this prob- 
lem: a linear elastic beam connected to two nonlinear springs. The linear beam is 
described by linear wave equation (which mimics Maxwell equations). 

It seems natural to assume that the laws of statistical mechanics might be valid 
for structural vibrations 

There is, however, an important difference between the ensembles of oscillators in 
statistical mechanics and structural oscillators. In structures we often have to take 
into account friction, while in statistical mechanics oscillators are nondissipative. 
We will return to this point in Section 6, and now let us focus only on the elastic 
nondissipative free structural vibrations. 

The first attempt to apply statistical mechanics to a chain of oscillators was un- 
dertaken about 40 years ago by E. Fermi, ,1. Pasta, and S. Ulam [1]. In terms of 
beam vibrations, they considered a discretized version of the equation for nonlinear 
longitudinal vibrations of an elastic beam with the stress-strain relation of the form 

a = EY(e + ße3) (1) 

where a, Ey, e, and ß are stress, Young's modulus, strain and nonlinearity parameter, 
respectively. The displacements u(x,i) obey the equation 

d2u       d ,du      „du3, ,„, 
— = ——+/?-- 2 
at1      ox ox       ox 

where t is time^-^1)^, and p is density of the beam. 
It was a common belief that the laws of statistical mechanics are valid for systems 

with a very large number of degrees of freedom. Since a 1-D continuum possesses 
an infinite number of degrees of freedom, one may expect that the laws of statistical 
mechanics can be applied to solutions of equation (2). To study the behavior of these 
solutions, equation (2) was replaced by a finite difference equation. The simplest 
test for validity of statistical relations is the equipartition of energy. If U{ is the 
displacement of the zth node, then the equipartition of energy means 



Figure 1: An Ensemble of Particles Connected by Springs 

•--«N-*-^^ 

Figure 2: A Chain of Particles Connected by Springs 

Figure 3: A Helicopter and Its Model 



(a) (b) 

Figure 4: (a) Black Body Radiation, (b) Related Structural Problem: Linear Beam 
linking Two Nonlinear Springs 

< mii\ >=< mu\ >- ■•■ =< m"n > (3) 

where m is the node mass, and < • > denotes the time average along a trajectory: 
for any function p(w,-, it,-) 

1   r° 
< p{ui,üi >- lim - /   p(v,i(t),üi(t))dt (4) 

0-+OO ft JO 

For systems considered in statistical mechanics (ergodic systems) motion is chaotic 
and the average values do not depend on the initial data. The common value (3) is 
called, by definition, temperature T. Equipartition of energy is a necessary condition 
for the laws of statistical mechanics to be true. 

The discretized equation (2) was studied numerically [1] for the number of points 
in the rr-direction, N, equal to 64. Surprisingly, it turned out that equipartition does 
not hold while the system exhibits a recurrent motion. The situation was cleared up 
to some extent by KAM theory [2]. According to KAM theory, for low excitation 
energies, the beam vibrates approximately as a linear body, and there is no equipar- 
tition of energy over the degrees of freedom. This is exactly what has been observed 
in numerical experiments by Fermi, Pasta and Ulam, where excitation energy was 
relatively small. KAM theory tells nothing about large energy excitation. In this 
case only numerical results have been obtained so far. 

Unfortunately, in the papers published on this subject, one comes across many 
contradictory statements. Putting aside the detailed discussion of the results reported 
previously (this will be done in a publication), herein the picture emerging from our 
numerical simulations is described. One detail of this picture-the existence of upper 
energy threshold- can be found in previous publications [3]-[7], but the entire picture 
is presented here for the first time. 



2    Longitudinal Vibrations of Elastic Beams 

At present the only way to establish the applicability of statistical mechanics to struc- 
tural vibrations is to conduct numerical or laboratory experiments. Computer exper- 
iments have been preferred for this study because they provide very easy parametric 
control. Since our goal is to achieve a qualitative understanding of the situation, we 
have to choose a structural model which, on one hand, is as simple as possible, and 
on the other hand, captures the main features of nonlinear vibrations. Longitudinal 
vibrations seem ideal for these purposes. 

Longitudinal vibrations are characterized by one kinematical field: the longitudi- 
nal displacement u(x,t). Lagrangian of longitudinal vibrations has the form 

L = A(-pu2 - U(e)) (5) 

where ut = ^, e = ff, and A is the area of the beam cross-section. Coordinate x is 
considered as the Lagrangian coordinate of beam particles. Energy density U{e) is 
assumed to be a convex function of strain e. The corresponding dynamical equation 
of free vibrations is 

d2u _  8 dU(ux) 
9 dt2 ~ dx    dux ^ 

For the Fermi-Pasta-Ulam (FPU) problem 

U = \EY{S
2+ \ße") (7) 

Expression for energy density (7) can only be used for moderate strain e, because 
U should have a singularity at the strain value e = -1. This value corresponds to 
the collapse of the material segment to a point. The simplest model that satisfies the 
singularity condition is the Neo-Hookian material 

1 = r*ir^ w 
where /.t is the shear modulus for small strains. The model (8) describes the elastic 
properties of some rubbers quite well. 

We performed numerical simulations for both cases (7) and (8). They look quali- 
tatively similar, therefore all figures presented below are for the FPU model. The only 
exception is Section 5, where we evaluate the range of strains where our conclusions 
are valid for rubbers. 

To set up a finite dimensional model we discretize the continuum beam, and 
consider a chain of interacting "particles"" (nodes) with the Lagrange function 

L = Bk - U(£i))a (9) 



where u; is the displacement of the ith particle, a is the distance between neighboring 
particles, and e,- = u,-+1 — u,-/a, a ■ N = £. 

We use periodic boundary conditions for our simulations. This means that uN+l = 
t(i. In fact, our results do not depend on the choice of the boundary conditions, this 
will be explained in Section 5. Discretized version of the equation of motion is taken 
in the form 

dIL_dLdIL_ 
dui     dt düi ' 

The laws of statistical mechanics were derived at the so called thermodynamical 
limit. This means that number of particles and energy per unit volume are kept 
constant while the size of the system, the total energy and the total number of particles 
N tend to infinity. In our case this corresponds to fixed particle distance a and fixed 
energy per unit length, while the beam length £ = aN and the total energy E 

E = J^±pu2
t+U(e))dx (11) 

tend to infinity. 
One might consider another limit, continuum limit, when the length of the beam £ 

and total energy E are fixed, while the total number of particles N tends to infinity. In 
this case the distance between neighboring particles a — £/N tends to zero. In general, 
these two limits are different. However, longitudinal beam vibrations possesses the 
remarkable property that the thermodynamical limit coincides with the continuum 
limit. This can be seen if we scale time, axial coordinate, and displacement, and 
introduce dimensionless quantities 

X U , N 

£ = 7.      « = 7 (12) 

where 

We can write 

* = H3T£ 

U{e) = EyU0(e) 

where U0{e) is the dimensionless energy density. The action functional of the system 
takes the form 

f2 Ldt = P AEY£L0dr       L0 = 
l-v2

T - U0{v{) (13) 

Since after scaling the action functional has the same form (up to a factor), the 
equation of motion also has the same form, and thermodynamical limit £ = aN —» 00 
is reduced after scaling to continuum limit on the unit segment 0 < £ < 1. 
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Note that the coincidence of the thermodynamical and continuum limits takes 
place only for longitudinal vibrations. These limits are different for lateral vibrations. 
This will be further explained in Section 6. 

For definiteness the following will be carried in in the continuum limit. 
One useful note should be made here. In the case of the FPU model the scaled 

Lagrangian has the form 

Lo = \vl - \{v\ + \ßv\) 

An additional scaling is possible which reduces the FPU Lagrangian to a standard 
form with ß = 1. This scaling is 

v —> w :     v = —rBwi        r —> A :     T = y7?A 

we have 
1-1 „2    l,..a , 1..4, £. = ^-5K + ^)] 

Hence, after scaling, dynamical equations of the FPU model coincides with the 
original equation with ß = 1. Therefore, all results are presented below for the case 
ß= 1. 

3     A Qualitative Picture of Nonlinear Vibrations 

3.1     Deviation from Equipartition 

Our primary goal is to establish whether the laws of statistical mechanics can be 
applied to structural vibrations. To this end, we started from probes of equipartition 
of energy over degrees of freedom. We measured "partial temperatures" 

1   f° 
Ti = pa < Ü: >= lim - /   paitfdt (14) 

In reality, we measured the quantities 

1   ro 
paufdt (15) 

v JO 

and used that time of observation 6 can be taken not very large because the partial 
temperatures approach their limit values fairly fast. Typical dependence of quantities 
(15) on 0 is shown in Fig. 5. In all the graphs time refers to dimensionless time r 
(12). The largest dimensionless period of vibrations of a linear spring is of order unity. 
Usually time 8 = 1000 is enough to reach the limit values of partial temperatures. 

Deviation from equipartition can be measured by the quantity 
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A = maz{-^-,     ...    -j—} 

where T is the temperature averaged over the nodes 

f_T1+T2 + ... + TN 

N 

3.2     Energy Thresholds 

We studied the dependence of A on the energy of initial excitation. We revealed the 
existence of a number of characteristic values of energy, energy thresholds, exceeding 
of which is characterized by changes in beam dynamics. These thresholds are shown 
in Fig. 6. Now lets discuss what all the lines in this figure mean. 

Lets consider an initial excitation of a single mode. In this case the initial data is 
taken in the form 

Vi(0) = ?f sm — + qf cos — 

Ui(0)=p?sin—+p?cos — (16) 

where k is the mode number. Hence for each single mode of excitation we have 4 
parameters which can be varied arbitrarily or 3 parameters if the energy value1 is 
prescribed. 

Lets first excite the lowest mode. If the energy of excitation is small, the final 
temperature distribution depends significantly on initial data. 'However, if we exceed 
some energy value, the first energy threshold, dependence on initial data disappears 
while energies are approximately equally distributed over the nodes. The dependence 
of A on the energy of excitation can be seen in Fig. 7. There is a fairly sharp drop 
in A for E~ ~ 10~3. Deviations from equipartition A for E" > IGT3 are not zero but 
small, in the order of 0.05. 

In fact, we observe a narrow range of energies for which this drop occurs. Moreover, 
if we try many initial conditions for the first mode excitation, we get a distribution 

1 Energy shown in all the graphs is dimensionless energy E", 

it relates to the "usual" energy E by the formula 

f<  i 
E = J  (^pu2

t+U(ux))dx = A£EYE' 
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of energy thresholds with a peak. For the sake of brevity, we will call it as "energy 
threshold", and attach the corresponding characteristic value of energy. 

Simulation show that the value of the energy threshold decays with the growth 
in the number of degrees of freedom. It seems very plausible that the first energy 
threshold reaches some asymptotic value when N —»■ oo. 

What happens if we initially excite a higher mode, say, the third one? The 
situation is very similar to the previous one with the only difference: energy threshold 
for the third mode is approximately 10 times higher than the first energy threshold. 
It seems that it also approaches some limit value. 

For the even modes the behavior of the energy thresholds is different: energy 
threshold does not grow monotonically with energy growth. We assume that this 
degeneracy relates to the resonance existing between even modes due to the evenness 
of the number of degrees of freedom. This degeneracy should disappear when we 
consider systems with an odd number of degrees of freedom. This hypothesis has 
been checked for 17 degrees of freedom, and the simulations support it very well. 

It turns out that there are two energy thresholds, low energy threshold,^, and 
upper energy threshold, Ec, such that for energy values below Ec motion is ordered, 
and for values above Ec motion is approximately ergodic, and equipartition holds. In 
the intermediate region the character of motion depends on which modes are excited. 
Low energy threshold is approximately equal to the first energy threshold. 

Low energy threshold seems not to depend on N for large JV, while upper energy 
threshold seems to grow with increasing N although for small N we observe decay of 
the upper energy threshold (see Fig. 6). 

What happens if we excite, for example, the first three modes simultaneously? Of 
course the energy threshold is E3. If all modes are involved in the initial excitation, 
then equipartition can only be guaranteed if the energy of excitation is greater than 
the upper energy threshold Ec. 

Upper energy threshold was predicted by Chirikov and Israilev [5] and was ob- 
served for the first time by Bocchiery et. al. [3] for a chain with Lennard-Jones 
interaction. However there are conflicting statements about the behavior of upper 
energy threshold when N grows. For example, in [5,Kantz]energy thersholds decay 
for large N. As it was mentioned, our results support simulations by Bocchiery 
et.al[3]^ 

3.3     Energy Transfer from Low Frequency Modes to High 
Frequency Modes 

Let us now consider energy thresholds from the perspective of energy transfer between 
modes. Let only the first mode be exited. The energy spectra for various values- of 
energy are shown on Fig. 8. Do not pay attention to the "teeth" on the curves, as 
they relate to the short time of averaging. When we do longer runs, these curves get 
smoother. We chose a time of averaging in such a way that we obtain results within 
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a reasonable amount of time. 

For low energy excitation, E' = 1(T5, which is far below Ec, energy is passed 
over the first four neighboring modes. When E" = 10~4, first 8 modes are involved 
in motion. In the vicinity of Ec (Fig. 8(e)), about half of the modes are excited. 
This seems peculiar, at the first glance, because equipartition of spatial distribution 
of temperature is observed at these values of energy. It is known from statistical 
mechanics, that, if equipartition holds in one set of.coordinates, it also holds in any 
other set of coordinates. In our case these sets of coordinates are displacement at 
nodes and amplitudes of modes. The explanation relates to the tail of the curve in 
Fig. 7. Deviation from equipartition is small but not zero. This "allows" high modes, 
in Fig. 8, not to be excited. Further increase of energy initiates stronger energy flow, 
and, when energy exceeds the upper energy threshold, we observe equipartition over 
modes (Fig. 8(h)). Note a specific feature of energy transfer: decrease of energy leads 
to "freezing" high frequency modes. 

3.4    Energy Transfer from High Frequency Modes to Low 
Frequency Modes 

Transfer of energy from high modes to low modes (sometimes referred to as "backward 
energy flow", in contrast to "forward energy flow" in the case of energy transfer from 
low to higher modes) has some import peculiarities. To discuss them consider, for 
definiteness, initial excitation of the 5th mode. Energy spectra for various values of 
excitation energy2 are shown in Fig. 9. It is instructive to compare Fig. 8 and Fig. 9. 
First of all, we see that for E" = 10-5 only the fifth mode is excited (Fig. 9(a)) while 
the first mode transmits its energy to the three neighboring modes. For E" = 10~4, 
the resonance of fifth and tenth modes becomes visible and only these two modes are 
excited (Fig. 9(b)), while the first mode conveys its energy to the 8 neighboring modes. 
For E" = 10~4, the resonance of fifth and tenth modes become more pronounced 
while the energy of the first mode is transferred to the 12 neighboring modes. For 
E" = 10~3 the new resonance of 15th mode becomes visible, but still only 3 modes are 
excited, while the first mode shares its energy with 15 other modes. We conclude that 
transfer of energy occurs very easily from low modes to high modes, and backward 
energy flow is impeded. Physically, it seems quite natural because high frequency 
oscillators are more stable and one needs to supply much more energy in order to 
provide the interactions with other oscillators. Impediment of backward energy flow 
disappears when the energy exceeds the upper energy threshold: energy can go back 
and forth without any obstacles. 

2The same as for the first mode on Fig. 8. 
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Figure 10: Correlation ofvelD^ral^for various values of energy 

3.5     Correlation Radius 

In the preceding subsections we have seen that the motion is not completely chaotic at 
low energy threshold. Another confirmation of this observation comes from the study 
of the correlation radius. We measured velocity correlations < üiüj > (i,j = l,2,...,N) 
and considered their dependence on the distance between the nodes i — j. Typical 
graphs of this dependence are shown in Fig. 10. Here < u^ie > / < ü16 > is plotted 
as a function of the node number k for various values of energy of excitation of the 
first mode, and u16 is the displacement of the center of the 32 particle chain. When 
E' = 0.003, which is below Ec, strong correlation is observed. Asymmetry relates to 
the dependence of correlations on initial conditions: the curve retains the asymmetry 
of the prescribed asymmetric initial data. Around the threshold, we see the nonzero 
correlation decays as energy is getting larger. When the upper energy threshold Ec is 
reached correlation practically disappears. This confirms that the motion for E > Ec 

is practically ergodic. 

3.6     Geometry of Phase Space 

Above discussion sheds some light on the geometrical structure of the phase portrait 
of beam vibrations. Unfortunately, in multidimensional space we do not have such 
powerful tools as Poincare maps for low-dimensional systems. Therefore, we have 
to be content with a qualitative picture. The sketches trying to give an idea on 
transformations of phase portrait are presented in Fig. 11-13. 

If the energy of excitation in less then Ec, then the energy surface is occupied by 
ordered motion (Fig. 11). For larger energies parts of the islands of ordered motion 
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decay and become chaotic "straits" (Fig. 12). Further increase of the energy leads 
to the decay of the "lowest mode island"(Fig. 13). Lowest mode island disappears 
when the energy exceeds the low energy threshold Ec. A chaotic sea occupies a 
considerable part of the energy surface. If we increase the energy more, the chaotic 
sea absorbs the second mode island of ordered motion and so on. Of course, some of 
the islands associated with modes, can disappear simultaneously, or in a "inproper 
order", depending on the peculiarities of the system. The highest mode island in our 
simulations survives until the energy exceeds the upper energy threshold. Then the 
chaotic sea occupies the entire energy surface, except very small islands of ordered 
motion, and motion becomes practically chaotic. 

4    Is There a "Planck Constant" for Vibrations of 
Beams? 

Consider again the spectral distribution for energy of excitation lying within the 
interval [Ec, E

c]. If motion were ergodic, energy is equally distributed over the modes, 
and the energy spectrum is the straight horizontal line (Fig. 14(a)). The ordinate of 
this line is T, because all modes carry the energy T due to equipartition. 

In reality, we observe spectrum distribution shown in Fig. 14(b). This indicates 
that motion is not ergodic. We see that high modes are practically not excited, they 
are "frozen." If we decrease energy further, more of the modes become frozen. This is 
very reminiscent of the difficulties which appeared in theoretical predictions of heat 
capacity of gases and black body radiation at low and high temperatures 100 years 
ago. 

A theoretical formula for a spectrum distribution based on ergodic hypothesis 
and equipartition was suggested by Rayleigh and Jeans. In the ID case it is exactly 
a straight line as shown in Fig. 14(a). In fact, Rayleigh and Jeans considered the 
3D case, where spectrum is parabolic because the number of modes in an interval 
[u),uj + du] is proportional to to2. Experiment confirmed the Rayleigh-Jeans formula 
for low frequencies, but revealed strong deviations for high frequencies. Qualitatively, 
the Rayleigh-Jeans spectrum and experimental spectrum are shown in Fig. 15. 

Thinking about this contradiction, Jeans noticed that high frequency motion be- 
haves as if it were frozen when we lower the temperature (or energy). 

In 1900, Planck found a simple formula for spectrum distribution which fits very 
well with the experimental data. If we rewrite this formula for ID vibration, it takes 
the form 

e T — 1 

where h is a constant determined from fitting to experimental data. 
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For low modes, T > hu, the exponent in (17) can be expended in a Taylor series, 
and we obtain equipartition 

E(u) = T 

For high modes, hu > T, we have exponential decay of spectrum 

E(u) = h'jje~~r~ 

The form of Planck's spectrum is shown qualitatively in Fig. 16. 
Later on, Planck invented the ergodic statistics of oscillators which leads to the 

energy spectrum (17). The statistics were based on quantum hypothesis, which in 
turn gave rise to quantum mechanics. 

Comparing the curves of Fig. 8 and Fig. 16, we see a remarkable qualitative 
coincidence. Moreover, the underlying physics seem familiar: high frequency modes 
freeze if we lower energy. This suggests a number of ideas: 

1. Try to fit experimental data for beam vibrations using Planck's distribution and 
check whether the Planck constant is a universal one for vibrations of beams. 

2. Check to what extent Planck's statistics is applicable to beam vibrations. 

3. We know that the dynamical origin of the spectrum decay is nonergodicity of 
motion. Maybe, there is an explanation of behavior of the quantum oscillator 
based on classical mechanics and nonergodicity without the quantum hypothe- 
sis? 

4. Similarity of beam spectrum and quantum oscillator spectrum suggests that 
some correspondence might exist between statistical mechanics of nonergodic 
systems and quantum statistics. 

At present, we are far from understanding all of that. Trying to get some insight, 
we started from an attempt to fit experimental data for a beam energy spectrum 
using. Planck's formula (17). A typical fit is shown in Fig. 17. The Planck constant 
for beam vibrations can be presented in the form 

h = Mcfh (18) 

where M, c, and h are the mass of beam, speed of sound, and a dimensionless constant, 
respectively. The approximate value of // is 

h = 0.003 (19) 

We. are not in a position to claim that /;, is a universal constant, universal in the 
sense that it is only material dependent. To establish that, we have to conduct a 
two-parametric study with respect to energy of excitation and the number of degrees 
of freedom. We have not done this yet because the idea of using Planck's spectrum 
came only recently. At present, we may say with some confidence that the value (19) 
does not depend on the number of degrees of freedom. A comprehensive study is now 
underwav. 
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5    High Energy Vibrations of a Cantilever Beam 

Now we are going to give some additional support to the idea that statistical mechan- 
ics is sensible for structural vibrations. 

Consider free vibrations of a cantilever beam. Let us excite the lowest mode. 
Which temperature distribution shall we get? Temperature at the clamped edge 
should be zero; temperature at the free edge should be maximal. Our intuition, 
developed on linear vibrations, suggests the curve shown in Fig. 18. 

But this is in obvious contradiction to equipartition! Therefore, either our intu- 
ition fails, or statistical mechanics does not work. What do the experiments show? 

If energy of excitation is small, we observe a temperature distribution which really 
looks like the curve in Fig. 18. For E - -10~3 it is shown in Fig. 19. Note that motion 
is not ergodic for this value of energy. If we increase the energy level then temperature 
distribution changes; for E = 10~2 it is shown in Fig. 20. If we keep increasing energy 
and overcome the low energy threshold, temperatures become constant and we get 
practically ideal equipartition (Fig. 21). 

It can be seen in Fig. 22 how temperature distribution approaches to equilibrium 
distribution; three curves correspond to successive moments of observation. 

Again, for a cantilever beam we found the same energy thresholds as above: if the 
first mode is excited, transition to equipartition occurs at the first energy threshold; 
if the second mode is excited, then for equipartition energy should exceed the second 
energy threshold, and so on. Final temperature distribution does not depend on 
initial excitation if E > Ec. 

Another conclusion which can be drawn out of these simulations is the indepen- 
dence of the equilibrium state from boundary conditions. It is seen that the edge 
zone does not penetrate into the interior portion of the beam. This is why our results 
for periodic boundary conditions are, in fact, universal. 

The simulations have been conducted for both FPU and Neo-Hookean models. 
For Neo-Hookean material we found that the low energy threshold corresponds to the 
strains of order 0.2 — 0.3. This is a working regime for many rubbers and polymer 
materials. 

6     Dissipative Systems 

Thermodynamics and statistical mechanics of dissipative system of oscillators is an 
open field now, and only a few statements (like the existence of attractors) can be 
made. An attempt to extend thermodynamics to limit cycles was undertaken in 
papers [12] [13] [14] . The major results are: 

1. Entropy disappears from thermodynamical relations because, after the transi- 
tional period, vibrations do not depend on initial data.(initial data enters in 
thermodynamical relations by means of entropy 
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2. The averaged Lagrangian takes place of energy in thermodynamical relations. 

The general theory [10] has been considered for the examples of Dufnng's Oscillator 
[13] and cantilever beam [14]. 

7    Major Accomplishments 

1. It is established that there exists a sequence of energy thresholds for beam vi- 
brations. They characterize the energy levels which should be exceeded in order 
to get equipartition of kinetic energy over the beam particles. The correspond- 
ing energy level depends on the wave length of initial excitation. The lowest 
energy threshold Ec corresponds to the first mode excitation. Second energy 
threshold E^ corresponds to the second mode excitation, and so on. For a beam 
model with N particles there are y energy thresholds. The maximum energy 
threshold (upper energy threshold Ec) corresponds to the transition to devel- 
oped chaos. For E > Ec the beam motion can be described by the relations 
of statistical mechanics. For E < Ec the beam motion is mostly ordered. In 
the intermediate region Ec < E < Ec motion of the beam is "partially chaotic" 
in the sense that energy exchange between beam particles is enough to reach 
equipartition but not enough to develop a completely ergodic motion. 

2. The existence of upper energy threshold has been established previously in a 
number of publications, however, there are contradictory statements on the 
dependence of upper energy threshold on the nummber of degrees of freedom. 
Our simulations show that upper energy threshold decays at low number of 
degrees of freedom and seems to grow at large number of degrees of freedom. 

3. The energy transfer has been studied in the energy range Ec > E > Ec. It 
was observed that energy is easily transferred from the low modes to higher 
modes but the backward energy flow (from high modes to low ones) is impeded. 
Analtically the energy transfer might be characterized by the energy spectrum 
which seems to be very well fitted by the Planck spectrum. 

4. In computer simulations, the approach to the state with homogeneuous distri- 
bution of temperature has been clearly observed for vibrations of a cantilever 
beam at high energies. 

5. Thermodynamics of limit cycles has been developed and applied to Dufnng's 
oscillator and cantilever beam 

8     Publications and Presentations 

Publications: 
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1. Berdichevsky, V.,"Reciprocal Relations in Nonlinear Vibrations,"International 
Journal of Engineering Science, Vol. 31,No. 8. pp. 1215-1218, 1993 

2. Berdichevsky, V,"Generalized Equipartition Law," International Journal of 
Engineering Science, Vol. 31,No. 4. pp. 673-677, 1993 . 

3. Berdichevsky, V., Özbek, A., and Kim, W. W., "Thermodynamics of Duffing's 
Oscillator," Journal of Applied Mechanics, (to appear) 

4. Berdichevsky, V., Kim, W. W., and Özbek, A., "Dynamical Potential for Non- 
linear Vibrations of a Cantilever Beam," Journal of Sound and Vibrations, (to 
appear) 

5. Berdichevsky, V. "Thermodynamics of Chaos", Pittman-Longman (to appear) 
1994 

Presentations: 

1. Berdichevsky, V., Özbek, A.,"Statistical Mechanics of the Duffing Oscillator", 
presented at Dynamics Days Texas, January 8-11, 1992. 

2. Ozbek, A., and Berdichevsky, V., "Thermodynamics of Duffing's Oscillator," 
presented at SIAM Conference on Applications of Dynamical Systems, Salt Lake 
City, Utah, October 15-19, 1992. 

3. Berdichevsky, V.,"Thermodynamics of Chaotic Vibrations," presented at SIAM 
Conference on Applications of Dynamical Systems, Salt Lake City, Utah, Oc- 
tober 15-19, 1992. 

4. Berdichevsky, V. "Statistical Mechanics of Structural Vibrations," presented at 
the Symposium and Workshop on Nonlinear Dynamics of Aerospace Structures, 
Cornell University, Ithaca, New york, August 24-25, 1993. 

5. Özbek, A., Shektman, I., Volovoi, V., Mueller, E., and Berdichevsky, V., "Sta- 
tistical Mechanics of Beam Vibrations," presented at the 114th ASME Winter 
Annual Meeting, New Orleans, LA, November 29-December 3, 1993. 
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Figure 11: Sketch of energy surface for excitation less than Ec 
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Figure 12: Sketch of energy surface for excitation less than Ec 
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Figure 13: Sketch of energy surface for excitation greater than Ec 
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Figure 14: Energy Spectra: (a) Equipartition Holds, (b) Simulated Ec < Total Energy 
<EC 
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Figure 15: 3-D Energy Spectrum 
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Figure 16: Plank's Spectrum 
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Figure 17: Calculated Energy Spectrum versus Plank's Spectrum 
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Figure 18: An Intuitive Temperature Distribution Along a Cantilever Beam 
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Figure 19: Temperature Distribution Along the Beam with E = 0.005 
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Figure 20: Temperature Distribution Along the Beam with E = 0.01 



28 

0.004 

0.000 
1.0 0.4 0.6 

Axial Coordinate 
Figure 21: Temperature Distribution Along the Beam with E = 0.1 
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Figure 22: Evolution of Equilibrium for E = 0.1 
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